AquaSep® Plus L/L Coalescer System

Entrained water in liquid hydrocarbons and chemicals can be a problem. This is particularly true for fuels that contain high concentrations of surfactants which are readily present in hydrocarbons and chemicals (see below). Surfactants make water removal difficult for conventional liquid/liquid coalescers and other water separation equipment because they lower the interfacial tension between the water and the continuous phase fluid.

The same problem can occur when attempting to separate oil from water. The presence of surfactants also leads to disarming of the oil coalescer. Pall’s AquaSep coalescer will efficiently separate water from a hydrocarbon stream without disarming.

Order Products

Red1000 Glass Fiber 12 micron (Beta 1000) Nitrile 36in 91.44cm

Product ID: HC2296FKS36H
Unit of Measure
1/EA
Min Order Qty
6
Anti-Static
No
Beta Rating
BETA 1000
Element Series
HC2296
Family
Red1000
Filter Media
Glass Fiber
Filter Removal Rating (μm)
12 µm
See All Attributes

Ultipor III Glass Fiber 5 micron (Beta 1000) Nitrile 8in 20.32cm length

Product ID: HC9601FDP8H#28
Unit of Measure
1/EA
Min Order Qty
1
Anti-Static
No
Beta Rating
BETA 1000
Element Series
HC9601
Family
Ultipor III
Filter Media
Glass Fiber
Filter Removal Rating (μm)
5 µm
See All Attributes
RT250A10S product photo

RT250A10S

Product ID: RT250A10S
Unit of Measure
30/EA
Min Order Qty
30
Packaging
Bulk
See All Attributes
DISC NM NHG 047100 product photo

DISC NM NHG 047100

Product ID: NHG047100
Unit of Measure
1/EA
Min Order Qty
1

DISC NM NNG 047100

Product ID: NNG047100
Unit of Measure
1/BOX
Min Order Qty
1
DISC NM NPG 025100 product photo

DISC NM NPG 025100

Product ID: NPG025100
Unit of Measure
1/BOX
Min Order Qty
1

Nexis® A Series Filter Cartridges, Removal Rating 0.5 μm, Polypropylene, Length 10 inches, FEP encapsulated fluorocarbon elastomer Orings

Product ID: NXA0510UM3F
Unit of Measure
30/EA
Min Order Qty
30
Removal Rating
0.5 µm
Membrane Material
Polypropylene
Cartridge Length (Imperial)
10 in
Cartridge Length (Metric)
254 mm
Cartridge Length (Metric)
25.4 cm
Gasket / O-Ring Material
FEP encapsulated fluorocarbon elastomer (O-rings)
See All Attributes
Nexis® A Series Filter Cartridges, Removal Rating 0.5 μm, Polypropylene, Length 10 inches, Nitrile product photo

Nexis® A Series Filter Cartridges, Removal Rating 0.5 μm, Polypropylene, Length 10 inches, Nitrile

Product ID: NXA0510UM3N
Unit of Measure
30/EA
Min Order Qty
30
Micron
0.5 micron
NXA 0.5-10U-M7S product photo

Nexis, NXA, 0.5 μm, 25.4 cm (10 in), SOE fin end, external 226 O-rings (retrofits other manufacturers’ Code 7), Silicone gasket

Product ID: NXA0510UM7S
Unit of Measure
30/EA
Min Order Qty
30
Micron
0.5 micron

Nexis® A Series Filter Cartridges, Removal Rating 0.5 μm, Polypropylene

Product ID: NXA051UH21
Unit of Measure
6/EA
Min Order Qty
6
Removal Rating
0.5 µm
Membrane Material
Polypropylene
Gasket / O-Ring Material
NA
End Configuration Code
H21
End Configuration
H21 - DOE, Santoprene gasket seal
Cartridge Type
NXA
See All Attributes
NXA 0.5-10U-M3E product photo

Nexis, NXA, 0.5 μm, 25.4 cm (10 in), SOE flat closed end, external 222 O-rings (retrofits other manufacturers’ Code 0), EPDM gasket

Product ID: NXA0510UM3E
Unit of Measure
60/EA
Min Order Qty
60
Micron
0.5 micron

Nexis® A Series Filter Cartridges, Removal Rating 0.5 μm, Polypropylene, Length 19.5 inches

Product ID: NXA05195UH21
Unit of Measure
12/EA
Min Order Qty
12
Removal Rating
0.5 µm
Membrane Material
Polypropylene
Cartridge Length (Imperial)
19.5 in
Cartridge Length (Metric)
495 mm
Cartridge Length (Metric)
49.5 cm
Gasket / O-Ring Material
NA
See All Attributes

Document

Datasheets

  • AquaSep® Plus L/L Coalescer System Effectively Separates Water from Petroleum Products and Chemicals (GAS-4105g)

    Select Language :

Description

Entrained water in liquid hydrocarbons and chemicals can be a problem. This is particularly true for fuels that contain high concentrations of surfactants which are readily present in hydrocarbons and chemicals (see below). Surfactants make water removal difficult for conventional liquid/liquid coalescers and other water separation equipment because they lower the interfacial tension between the water and the continuous phase fluid.

 

The same problem can occur when attempting to separate oil from water. The presence of surfactants also leads to disarming of the oil coalescer. Pall’s AquaSep coalescer will efficiently separate water from a hydrocarbon stream without disarming.

 

Common Sources of Surfactants in Hydrocarbon and Chemical Processes

 
  • Sulfur compounds 
  • Organic acids
  • Well treating chemicals 
  • Anti-static chemicals 
  • Detergents 
  • Corrosion inhibitors 
  • Chemical additives
 

Coalescer Information


The Pall AquaSep coalescer is a multiple stage system. It first removes particulate matter, then coalesces and separates the dispersed phase liquid from the continuous phase liquid.

For removal of water from hydrocarbons, an AquaSep coalescer will remove entrained water to a level of below 15 ppmv over a wide range of conditions:

 

  • Inlet water concentration as high as 3% water by volume (i.e., 30,000 ppmv.)
  • Interfacial tension as low as 3.0 dyne/cm.
 

For removal of oil from water, an AquaSep Plus coalescer will remove free oil from water over a wide range of conditions in the horizontal configuration.

 

Products in this datasheet may be covered by one or more patents, including EP 930,926; US 5,443,724; US 6,332,987.

Specifications

Liquid/Liquid Coalescer Elements

 

Stage 1: Prefiltration

 

Due to the fine pore structure of this coalescer medium, Pall recommends that a prefilter be installed upstream of the oil coalescer assembly to properly control particulate matter in the liquid stream. Installing a prefilter significantly extends the life of the coalescer and reduces particulate concentration in the filter effluent to meet solids specifications.

To maximize the service life of AquaSep Plus coalescers, each coalescer is constructed with an integral prefilter.

Stage 2: Coalescence

 

The hydrocarbon and water mixture enters the coalescing filter element and flows inside to outside (see Figure 1). This is where small droplets of dispersed phase liquid come together, or coalesce, as the mixture moves through the depth of Pall’s specially formulated coalescer medium.

Stage 3: Separation

 

In separating water from fuel, water-free fuel and large water droplets flow toward the separator located directly below the coalescer stage. Flow is outside to inside (see Figure 1). The separator medium is hydrophobic, which prevents water from entering the separator. Only water-free fuel flows through the separator. Water and fuel are removed by separate drain connections.

In separating oil from water, a settling zone is designed downstream of the coalescer. In the settling zone, the large coalescer droplets are separated due to gravity (see Figure 2).

Benefits of Liquid/Liquid Coalescers

 

Continuously Efficient in Liquid Separation and Particle Removal for Improved Fluid Quality and Value

 

The effective liquid separation and the particulate removal abilities of the AquaSep Plus coalescer system significantly reduce off-spec product incidents, thereby saving reprocessing and transportation costs.

 

  • Low-cost Liquid Separation and Solids Removal
    Due to AquaSep Plus coalescer’s longer life and superior liquid separation efficiency, the overall cost of liquid separation is low, especially when compared to other, less efficient, methods. The integral prefilter within the AquaSep Plus coalescer maximizes element service life.
  • Does Not Disarm; Increases Service Life
    Pall’s specially formulated medium coalescer contains no glass fiber and does not disarm in the presence of surfactants. This results in longer service life than conventional coalescers. The prefilter stage removes particulates and also extends the filter service life.
  • High-Performance Design Results in Smaller Assembly Size
    The high-performance AquaSep Plus coalescer stack design promotes an even flow distribution permitting a high rate of flow. As a result, fewer coalescer cartridges are required to efficiently remove water from fuel. This results in a small economic assembly size.

 

Figure 1: AquaSep Plus Liquid/Liquid Separation System with Coalescer in a Horizontal Housing with a Prefilter

 

Lower Disposal and Maintenance Costs

 

The long, useful life of the AquaSep Plus cartridges, is obtained from Pall’s specially formulated non-disarming high voids volume media that is properly protected by Pall prefilters. Overall results are fewer cartridge changeouts for low maintenance and disposal costs.

 

Unique Stack Design

 

Pall’s coalescer element is stacked on top of a separator element. This design optimizes the flow distribution from the coalescer to the separator, ensuring that each separator has an equal flow. In conventional two-stage systems, the separators are located at different distances from the coalescer, causing an unequal distribution of flow to the separator. These conventional two-stage systems require several coalescer elements for each separator. Pall’s stack design results in overall smaller assembly size and a longer coalescer/separator life.

 

Fluid Compatibility

 

Pall’s AquaSep Plus liquid/liquid coalescer is compatible with refined products including:

 

  • All Gasolines
  • Diesel
  • Kerosene
  • Lube oils
  • Aromatics
  • Petrochemicals
  • LPG
 

Figure 2: AquaSep XS Liquid/Liquid Separation System with an Integrated Coalescer/Separator Stack in a Vertical Housing with a Prefilter

 

Mechanism of Coalescing with Conventional Glass Medium

 

One of the biggest operational problems for conventional liquid/liquid coalescers is disarming. When a liquid/liquid coalescer is performing efficiently, water molecules bond with components on the glass fiber called a silenol functional group. The water molecules that collect on the glass fiber coalesce with incoming water molecules to form a large droplet, which will eventually become heavy enough to drain from the coalescer. In an efficiently operating oil coalescing, once a droplet has fallen from an active site, the coalescing process repeats (see Figure 3).

 

Figure 3: Mechanism for Coalescing

Disarming occurs when surfactants bond with the silanol. The silanol group has a greater affinity for surfactant molecules than for water molecules. As the surfactant molecules bond to the glass fibers, the water molecules pass quickly through the medium (see Figure 4). This greatly reduces water removal efficiency, increasing the probability of a product quality problem, and short service life of oil water separator coalescer filter, which, in turn, results in frequent changeout and increased disposal costs of coalescer filter elements.

 

Figure 4: Mechanism for Disarming

Performance

Performance Claims and Specifications

 

Maximum Temperature 66 °C/150 °F
Initial Pressure Drop 0.14 bard/2 psid
Recommended Changeout 1.03 bard/15 psid

Type

Coalescers

Additional Information

Ordering Information

Part Numbers/Ordering Information

Part Number Description Outer Diameter
(cm/in.)
Length
(cm/in.)
LCS2B1AH AquaSep Plus Coalescer 9.53/3 3/4 50.8/20
LCS4B1AH AquaSep Plus Coalescer 9.53/3 3/4 101.6/40
LSS2F1H Separator 9.53/3 3/4 50.8/20

 

Please call your Pall representative to confirm compatibility for a specific application.